Search results for "Nitrile ligand"

showing 4 items of 4 documents

Influencing the Self‐Sorting Behavior of [2.2]Paracyclophane‐Based Ligands by Introducing Isostructural Binding Motifs

2020

Abstract Two isostructural ligands with either nitrile (Lnit) or isonitrile (Liso) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself (Lnit) or its precursors (Liso) were resolved by HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental electronic circular dichroism (ECD) spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf)2] differ in their composition: whereas Lnit forms dinuclear complexes, Liso…

Circular dichroismNitrileSupramolecular chemistry010402 general chemistry01 natural sciencesCatalysisself-sortingsupramolecular chemistrychemistry.chemical_compoundIsostructuralFull Paper010405 organic chemistryLigandOrganic ChemistryAbsolute configurationGeneral ChemistryNuclear magnetic resonance spectroscopyself-assemblyFull Papers0104 chemical sciencesCrystallographychemistrynitrile ligandsEnantiomerSupramolecular Chemistry | Hot Paperisonitrile ligandsChemistry (Weinheim an Der Bergstrasse, Germany)
researchProduct

Polynitrile anions as ligands: From magnetic polymeric architectures to spin crossover materials

2010

International audience; The use of polynitrile anions as ligands (L) either alone or in combination with neutral co-ligands (L′) is a very promising and appealing strategy to get molecular architectures with different topologies and dimensionalities thanks to their ability to coordinate and bridge metal ions in many different ways. The presence of several potentially coordinating nitrile groups (or even other donor groups as –OH, –SH or –NH2), their rigidity and their electronic delocalization allow the synthesis of original magnetic high dimensional coordination polymers with transition metals ions. Furthermore, these ligands have shown coordinating and bridging capabilities in novel discr…

NitrileMetal ions in aqueous solutionMetal(II) complexesInorganic chemistry[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesCoordination complexInorganic ChemistryDelocalized electronchemistry.chemical_compoundTransition metalSpin crossoverMagnetic propertiesMagnetic transitionMaterials Chemistry[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistrychemistry.chemical_classificationThermochromismThermochromism010405 organic chemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryPolymer0104 chemical sciencesCoordination polymersCrystallographyPolynitrilechemistryStructural transitionNitrile ligandCyano ligand
researchProduct

A novel polynitrile ligand with different coordination modes: Synthesis, structure and magnetic properties of the series [M(tcnoprOH)2(H2O)2] (M=Mn, …

2008

International audience; A novel polynitrile ligand (tcnoprOH− = [(NC)2CC(OCH2CH2CH2OH)C(CN)2]−) with up to five potentially coordinating groups has been synthesized in a one-pot reaction from a cyclic acetal and malononitrile. The combination of this novel ligand with different transition metal ions has led to the synthesis of two different structural types with the same formula but with different coordination modes in the ligand. Mn(II) and Cu(II) lead to a μ2-N,O-coordinating mode in the series of compounds formulated as [M(N,O-tcnoprOH)2(H2O)2] (M = MnII (1) and CuII (2)), whereas Co(II) and, most probably Ni(II), lead to a μ2-N,N′-coordinating mode in [Co(N,N′-tcnoprOH)2(H2O)2] (3). Bot…

StereochemistryMetal ions in aqueous solutionZero field splitting[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesAnalytical ChemistryInorganic ChemistryPolynitrile ligandschemistry.chemical_compoundParamagnetismGroup (periodic table)Magnetic properties[CHIM]Chemical Sciences[CHIM.COOR]Chemical Sciences/Coordination chemistrySpectroscopyMalononitrile010405 organic chemistryLigandOrganic ChemistryAcetalMagnetic chains3. Good health0104 chemical sciencesCrystallographychemistryChain complexesDerivative (chemistry)
researchProduct

Influencing the self‐sorting behavior of [2.2]paracyclophane based ligands by introducing isostructural binding motifs

2020

Two isostructural ligands with either nitrile ( L nit ) or isonitrile ( L iso ) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself ( L nit ) or its precursors ( L iso ) were resolved via HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental ECD‐spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf) 2 ] differ in their composition: whereas L nit forms dinuclear complexes L iso exclusively forms trinuc…

supramolekulaarinen kemianitrile ligandsself-assemblyliganditsupramolecular chemistryisonitrile ligandsself-sorting
researchProduct